Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202301.0076.v1

ABSTRACT

The novel coronavirus disease 19 (COVID-19) has resulted in an estimated 20 million excess deaths and the recent resurgence of COVID-19 in China is predicted to result in up to 1 million deaths over the next few months. With vaccines unable to halt transmission it is important to continue our quest for safe, effective, affordable drugs that will be available to all countries. Drug repurposing is one of the strategies being explored in this context. Recently, out of 7,817 approved drugs, 214 candidates were systematically down-selected using a combination of 11 filters including approval status, assay data against SARS-CoV-2, pharmacokinetic, pharmacodynamic and toxicity profiles. These drugs were subjected in this study to virtual screening against various targets of SARS-CoV-2 followed by molecular dynamic studies of the best scoring ligands against each target. The chosen molecular targets were Spike receptor binding domain, Nucleocapsid protein RNA binding domain, and key non-structural proteins 3, 5, 12, 13 and 14. Four drugs approved for other indications — alendronate, cromolyn, natamycin and treprostinil — look sufficiently promising from our in silicostudies to warrant further in vitro and in vivo investigations as appropriate to ascertain their extent of anti-viral activities.


Subject(s)
Coronavirus Infections , Drug-Related Side Effects and Adverse Reactions , Death , COVID-19
2.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0323.v1

ABSTRACT

Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to quickly get safe, effective, and affordable COVID-19 treatment is to repurpose drugs that are already approved for other diseases as adjuvants along with the ongoing vaccine regime. The process of developing an accurate and standardized drug repurposing dataset requires a considerable level of resources and expertise due to the commercial availability of an extensive array of drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx platform. CoviRx is a user-friendly interface that provides access to the data, which is manually curated for COVID-19 drug repurposing data. Through CoviRx, the data curated has been made open-source to help advance drug repurposing research. CoviRx also encourages users to submit their findings after thoroughly validating the data, followed by merging it by enforcing uniformity and integ-rity-preserving constraints. This article discusses the various features of CoviRx and its design principles. CoviRx has been designed so that its functionality is independent of the data it dis-plays. Thus, in the future, this platform can be extended to include any other disease X beyond COVID-19. CoviRx can be accessed at www.covirx.org.


Subject(s)
COVID-19
3.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0310.v1

ABSTRACT

SARS-CoV-2, is the cause of the COVID-19 pandemic which has claimed more than six million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA approved molecules with established safety profiles that have a plausible mechanism for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising repurposable drug candidates that are safe, efficacious, and cost-effective for the treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx, https://www.covirx.org/) that was also developed to enable scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Subject(s)
COVID-19
4.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0288.v1

ABSTRACT

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given the approximately 8,000 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially-available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies compared to in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus have virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Subject(s)
COVID-19
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1503192.v1

ABSTRACT

Coronavirus disease-2019 (COVID-19), a global pandemic has currently infected more than 247 million people around the world. Nowadays, several receptors of COVID-19 have been reported, and few of them are explored for drug discovery. New mutant strains of COVID-19 are emerging since the first outbreak of disease and causing significant morbidity and mortality across the world. Although, few of drugs were approved for an emergency uses, however, promising drug with well proven clinical efficacy is yet to be discovered. Hence, researchers are continuously attempting for search of potential drug candidates targeting the well-established enzymatic targets of the virus. The present study is aiming to discover the antiviral compounds as potential inhibitors against the five targets in various stages of the SARS-CoV-2 life cycle, i.e., virus attachments (ACE2 and TMPRSS2), viral replication and transcription (M pro , PL pro and RdRp), using the most reliable molecular docking and molecular dynamics method. The ADMET study was then carried out to determine the pharmacokinetics and toxicity of several compounds with the best docking results. To provide a more effective mechanism for demonstrating protein-ligand interactions, molecular docking data were subjected to a molecular dynamic (MD) simulation at 300K for 100 ns. In terms of structural stability, structure compactness, solvent accessible surface area, residue flexibility, and hydrogen bond interactions, the dynamic features of complexes have been compared.


Subject(s)
Genetic Diseases, Inborn , COVID-19
6.
Bioorg Chem ; 104: 104269, 2020 11.
Article in English | MEDLINE | ID: covidwho-747220

ABSTRACT

COVID-19 caused by the novel SARS-CoV-2 has been declared a pandemic by the WHO is causing havoc across the entire world. As of May end, about 6 million people have been affected, and 367 166 have died from COVID-19. Recent studies suggest that the SARS-CoV-2 genome shares about 80% similarity with the SARS-CoV-1 while their protein RNA dependent RNA polymerase (RdRp) shares 96% sequence similarity. Remdesivir, an RdRp inhibitor, exhibited potent activity against SARS-CoV-2 in vitro. 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion. Crystal structures of therapeutically important SARS-CoV-2 target proteins, namely, RdRp, Mpro, endoribonuclease Nsp15/NendoU and receptor binding domain of CoV-2 spike protein has been resolved, which have facilitated the structure-based design and discovery of new inhibitors. Furthermore, studies have indicated that the spike proteins of SARS-CoV-2 use the Angiotensin Converting Enzyme-2 (ACE-2) receptor for its attachment similar to SARS-CoV-1, which is followed by priming of spike protein by Transmembrane protease serine 2 (TMPRSS2) which can be targeted by a proven inhibitor of TMPRSS2, camostat. The current treatment strategy includes repurposing of existing drugs that were found to be effective against other RNA viruses like SARS, MERS, and Ebola. This review presents a critical analysis of druggable targets of SARS CoV-2, new drug discovery, development, and treatment opportunities for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Discovery , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , COVID-19/epidemiology , Drug Repositioning , Humans , Pandemics
7.
Eur J Med Chem ; 195: 112275, 2020 Jun 01.
Article in English | MEDLINE | ID: covidwho-27869

ABSTRACT

Drug repurposing is a strategy consisting of finding new indications for already known marketed drugs used in various clinical settings or highly characterized compounds despite they can be failed drugs. Recently, it emerges as an alternative approach for the rapid identification and development of new pharmaceuticals for various rare and complex diseases for which lack the effective drug treatments. The success rate of drugs repurposing approach accounts for approximately 30% of new FDA approved drugs and vaccines in recent years. This review focuses on the status of drugs repurposing approach for various diseases including skin diseases, infective, inflammatory, cancer, and neurodegenerative diseases. Efforts have been made to provide structural features and mode of actions of drugs.


Subject(s)
Drug Discovery/methods , Drug Repositioning/methods , Animals , Chemistry, Pharmaceutical , Humans
SELECTION OF CITATIONS
SEARCH DETAIL